

Design of a Recharge Well in the Dry Areas of Tunisia Liz Hilkert 11 April 2005

Problem Background:

· In the dry areas of Tunisia, aquifer water is utilized for drinking, irrigation and grazing faster than it can be naturally replenished.

• Storms only occur a few times a year and are high intensity, short duration.

•Because the average annual rainfall is 162 mm, each storm is critical to aquifer replenishment.

• Current recharge wells clog within a few years of installation. Clay accumulation is the main known cause of clogging.

· Currently installed recharge wells do not have a water pretreatment system in place.

(source: Abdelhí)

Objective:

Douz Medeniner

Sahara

Ghomrassen. Guermessa orataouine

11 April 2005

Mahres

Golfe de Gabes

Design a recharge well that maximizes the amount of stormwater transported from the ground to the aquifer without affecting the water quality.

Model Testing Methodology

•Designed the pictured setup to test different sand filter material

• Determined the most efficient filter material in mass of sediment trapped per minute

• Tested the efficiency of the entire well system

• Analyzed the clogging rate of the experimental setup by running contaminated water through the system multiple times without cleaning it.

• Determined the maintenance requirements based on the clogging rate of the filter

Potential Impacts to the Region

This service learning experience has the potential to impact the dry areas of Tunisia in the following ways:

• Agricultural production (secure food supply)

11 April 2005

• Health benefits (adequate safe drinking water)

• Rural and economic development (water available for increased tourism)

PURDUE UNIVERSITY Design of Recharge Well in the Dry Areas of Tunisia Liz Hilkert, ABE-ENRE

> Dr. Rabi H. Mohtar – Technical Advisor Dr. Klein Ileleji – Senior Capstone Project Coordinator

Recharge Well Design Tasks:

· Brainstormed recharge well designs

• Developed a dynamic spreadsheet for design and analysis with the following analysis sections:

Storm Analysis

- Infiltration Analysis
- · Pipe Size Analysis
- ·TSS Sizing Parameters
- Flow Calculations
- · Economic Analysis

•Designed and developed a small scale model to test the filter designs

•Tested the model to determine the best interior filter and overall system efficiency

• Completed an economic analysis to compare the maintenance costs of recharging the aquifer vs desalinizing water

I would like to thank the following people for their support during the project design:

> Fethi Abdelhi Scott Brand Adriana Brueggeman Nate Canady Klein Ileleji Rabi H. Mohtar Mohamed Ouessar Carol Sikler