PURDUE UNIVERSITY

Yi Wen (BE & BCHM), Lanchen Wu (BE & BCHM), Lingyu Yang (BE)

Statement of Problem & Background:

Burger and sandwiches are consumed in enormous amount daily in the U.S. However, eating burger or sandwich is usually pretty messy. Most burgers and sandwiches cannot hold themselves together when being eaten. Currently, there is no well developed edible food wrapper on the market to help people eat burger or sandwich without falling apart. We are developing a brand new product to solve this problem, the edible Soybean Food Wrapper. Study showed soy protein has good film forming abilities and excellent barrier properties against oxygen and oil movement in low relative humidity

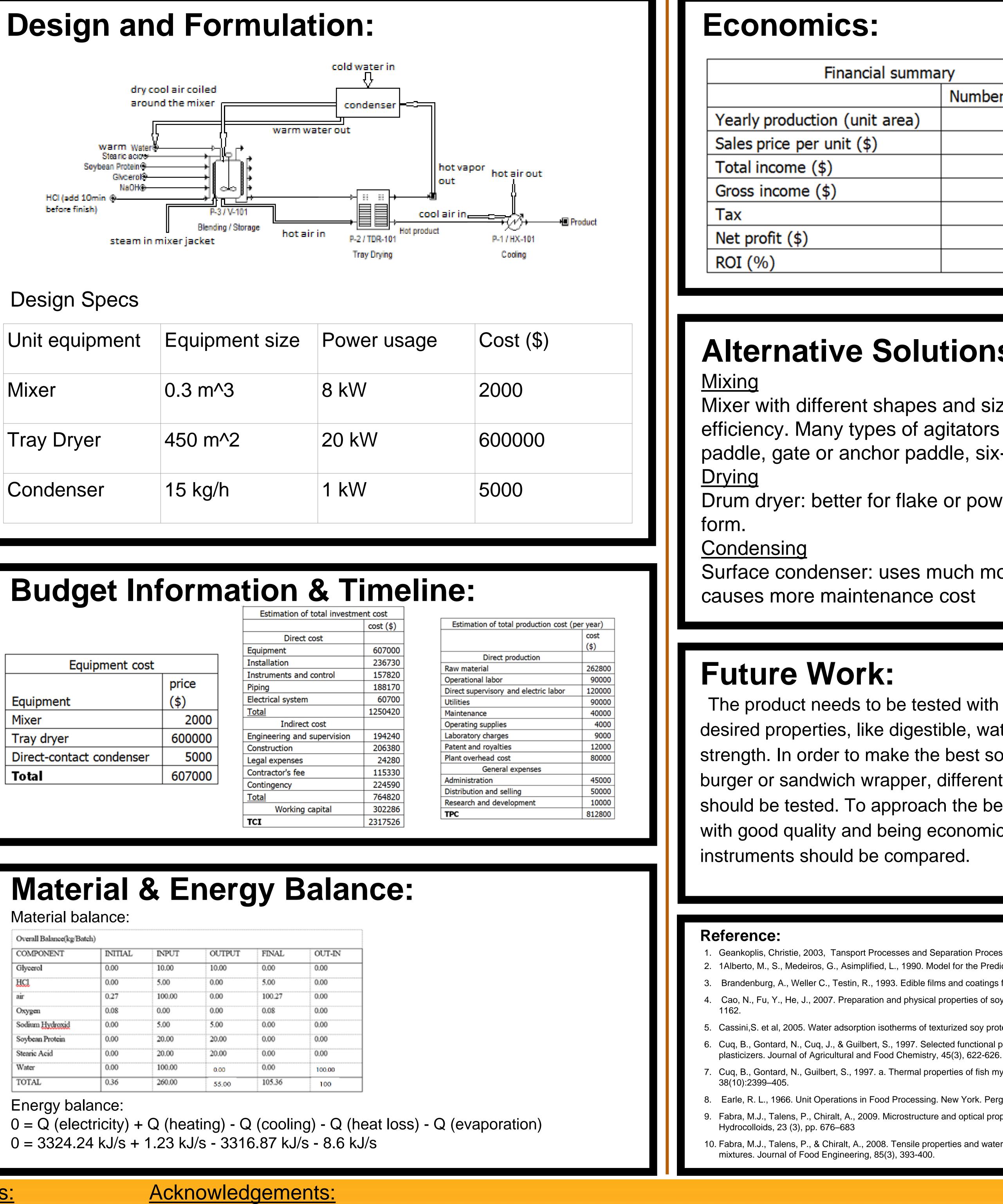
Global & Social Impact:

The use of natural renewable resources soybean for creating new industrial products is a critical factor for future economic growth, given dwindling resources and increase emphasis on industrial environmental stewardship.

With soybean film wrapper, there will be less using of napkins to clean up after having fast food and less using of wrapping paper. It also expands the type of food people can eat on their way to work or study to help them being healthy and saving time.

Literature Review & Patent Search:

Edible soy protein wrapper is under the international classification: A23, C08. The searches were done by key word search, citation and relevant patent checking under same classifications.


Although 17 patents were found by Espacenet Patent Search using key words (soy, protein, edible, film), only 2 patent were considered relevant to our product idea (CN101715870 B and CN 101550275 A). Both of these two patents are produce edible films by soy protein isolate with xylan or collagen, glycerol, and extrusion process were needed for the film product. The major application of these twokinds of films is for raw meat product and sausage, which is totally different form our product idea. By looking for the citation and patent citing these patents, no relevant patent were found.

Burger and sandwiches are consumed in huge amount every day in the US. However, all burgers produced on the market cannot hold themselves together when people eat them. Related edible package film is not well developed to help people with eating burgers or sandwiches without falling apart. Soy protein has been studied for its good film forming abilities and excellent barrier properties against oxygen and oil movement in low relative humidity (Gennadios, McHugh, Weller, & Krochta, 1994). Most soy proteins (~90%) are globulins, which can be fractionated into 2S, 7S, 11S and 15S according to their sedimentation coefficients. The major soybean proteins have molecular weights ranging from 200 to 600 kDa. The 7S and 11S fraction, the main fractions making up about 37% and 31% of the total extractable protein, have the capability of polymerization (Wolf, 1972). The formation of the films from soy proteins has been described as a two-step process involving the heat denaturation of the proteins followed by surface dehydration.

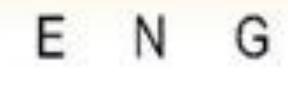
Sponsor: Purdue University - Agricultural and **Biological Engineering Soybean Innovation Competition**

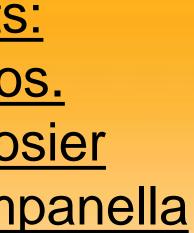
Technical Advisor: Prof. Martin R. Okos. Prof. Nathan S. Mosier Prof. Osvaldo Campanella

CAPSTONE/DESIGN EXPERIENCE 2016 Soybean Food Wrapper

Design Specs

Unit equipment	Equipment size
Mixer	0.3 m^3
Tray Dryer	450 m^2
Condenser	15 kg/h


Equipment cost	
	price
Equipment	(\$)
Mixer	2000
Tray dryer	600000
Direct-contact condenser	5000
Total	607000


Direct cos
Equipment
Installation
Instruments and con
Piping
Electrical system
<u>Total</u>
Indirect co
Engineering and sup
Construction
Legal expenses
Contractor's fee
Contingency
<u>Total</u>
Working cap
тсі

COMPONENT	INITIAL	INPUT	OUTPUT	FINAL	O
Glycerol	0.00	10.00	10.00	0.00	0.0
HCI	0.00	5.00	0.00	5.00	0.0
air	0.27	100.00	0.00	100.27	0.0
Oxygen	0.08	0.00	0.00	0.08	0.0
Sodium Hydroxid	0.00	5.00	5.00	0.00	0.0
Soybean Protein	0.00	20.00	20.00	0.00	0.0
Stearic Acid	0.00	20.00	20.00	0.00	0.0
Water	0.00	100.00	0.00	0.00	10
TOTAL	0.36	260.00	55.00	105.36	,

Energy balance:

Instructors: Prof. Martin R. Okos. Prof. Martin R. Okos. Prof. Nathan S. Mosier Prof. Osvaldo Campanella

nancial summary			
	Number of units		
(unit area)	7884000		
it (\$)	0.15		
	1182600		
	369800		
	35%		
	240370		
	45.5		

With a ROI of 45%, the factory is very profitable if initial investment is not considered. With consideration of initial investment, the breakeven rate of interest is about 2.6%.

Alternative Solutions and Evaluation:

Mixer with different shapes and sizes may gives better mixing efficiency. Many types of agitators exist for mixing, such as four-blade paddle, gate or anchor paddle, six-blade open turbine

Drum dryer: better for flake or powder form of product instead of sheet

Surface condenser: uses much more energy and cooling water,

The product needs to be tested with different machines for different desired properties, like digestible, water resistant, heat resistant and tensile strength. In order to make the best soy film product for our applications like burger or sandwich wrapper, different combinations of the ingredients should be tested. To approach the best process for producing the product with good quality and being economically feasible, different methods and

Tansport Processes and Separation Process Principles. 4th Edition, Prentice-Hall, Inc., Upper Saddle River, New Jersey Medeiros, G., Asimplified, L., 1990. Model for the Prediction of Drying Rates for Foods. Journal of Food Engineering 12 1-11 Brandenburg, A., Weller C., Testin, R., 1993. Edible films and coatings from soy protein. Journal of Food Science, 58(5), 1086-1089.

Cao, N., Fu, Y., He, J., 2007. Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids, 21(7), 1153-

Nater adsorption isotherms of texturized soy protein. Journal of Food Engineering 77(1):194-199 Gontard, N., Cug, J., & Guilbert, S., 1997. Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic

Cuq, B., Gontard, N., Guilbert, S., 1997. a. Thermal properties of fish myofibrillar proteinbased films as affected by moisture content. Polymer

Earle, R. L., 1966. Unit Operations in Food Processing. New York. Pergamon Press

Fabra, M.J., Talens, P., Chiralt, A., 2009. Microstructure and optical properties of sodium caseinate films containing oleic acid-beeswax mixtures, Food

Fabra, M.J., Talens, P., & Chiralt, A., 2008. Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid-beeswax

ENGINEERING

Think impact

PURDUE