Threat Materials: Detection and Characterization

Esam Hussein, Ph.D., P.Eng. Laboratory for Threat Material Detection Mechanical Engineering University of New Brunswick - Fredericton Canada http://www.unb.ca/ME/faculty/hussein.html

> Purdue School of Nuclear Engineering June 20, 2011

Threat Materials

Threat to Public Health, Wealth, Safety and Security.

- **Explosives:** in luggage or cargo, ammunition, buried landmines and UXO's.
- Narcotics: cocaine, heroine, marijuana.

Contraband: weapons, cash, tobacco.

Contaminating: chemical and biological.

- Nuclear/Radioactive: radioisotopes (dirty bomb), enriched uranium, plutonium.
- **Depriving:** loss of coolant in a reactor, LDL in blood.

Detection Challenges

- Obscured, Concealed, Hidden, Smuggled, Secreted.
- No particular geometric shape (or have a common shape).
- Detection Technology: Fast, reliable (low false alarm rate), Foolproof, simple and inexpensive.
- Need to determine peculiar distinguishing features.
- Need to find a way to detect these features.

Explosives Characteristics

Explosion: rapid decomposition, release a substantial amount of energy.

Most are nitrogen-based (but some are not).

Bonding Agent: Nitrogen, attaches itself to the other elements (high specific power).

- Fuel: Hydrogen and/or Carbon.
- Oxidation: of fuel, need Oxygen.
- **Detonator:** needed to trigger a high explosive.

Explosives Detection Parameters

Detonator: a low explosive within a metallic tube or a shell, ignited by an electrically heated wire or a fuse.

- Common metal detectors.
- Plastic explosives contain no detonators.

Four basic elements: N, O, H, and C.

- Common elements in innocuous materials.
- Difficult to determine all simultaneously.
- Particular chemical & crystalline structure.

Relative Elemental Content: O/N, C/N and/or H/N ratios.

- Unique indicators.
- Difficult to determine.

Mass Density: 1300 to 1800 kg/m³ (higher than most organics & polymers, lower than most metals).

Effective Atomic Number: close to that of H₂O.

Illicit Drugs

Characteristics

Hard drugs: heroine and cocaine.

- Rich in H, C, O, Cl, and to a lesser extent, N.
- Much denser than most organics and polymers.
- Cl is a good thermal-neutron absorber.

Recreational drugs: marijuana, tobacco.

- Leafy, low density.
- Rich in potassium
- Illicit Drugs: naturally radioactive, 1.46 MeV γ (11%); β (89%), $E_{max} = 1.312$ MeV.
- Illicit Drugs gamma-ray used to passively detect marijuana in large quantities concealed in shipment containers.
- Beta particles are detectable with contamination detectors (paper-cased postal parcels).

Biological and Chemical Threats

Biological: anthrax, ricin, viruses, bacteria and toxins.

- Detection requires some form of assaying using techniques commonly employed in food, clinical and environmental testing.
- Detectable by molecular recognition.

Chemical: nerve choking, blister agents, and chemical toxins.

- Vapor emission.
- Chemical analysis on samples for molecular recognition.

Vapor Emission

Unique Nuclear Mass: peculiar molecular composition.

Volatile molecules.

Sniffers: Biological (canis).

Ion Mobility spectrometry:

- Mass of vapor molecule by measuring velocity of ion when accelerated at a constant voltage.
- Ionization facilitated by a small source of beta particles, ⁶³Ni.

Electron-capture Device: Affinity of Nitrogen to absorbing electrons.

Vapor Emission: Cont.

Chromatography:

- Heating of sample wipe.
- Emerging gases injected into an ion exchange column, aided by a carrier gas.
- Gases emerge from this separation column at different times, depending on their ionic properties.

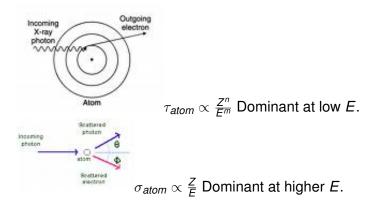
Artificial Nose.

Vapor detection:

- Effective, but too sensitive to residual amounts.
- Affected by environmental conditions: dust, humidity and temperature.
- Some plastic explosives have a very low vapor pressure.
- Tight sealing can also reduce detectability.

Vapor Emission

Which one is more cost effective?


Vapor Emission: Body Scanner

Air Shower Portal

X-ray or Gamma-Ray Photons (\approx 60 keV \rightarrow 1.3 MeV)

Attenuation of X-ray & Gamma-Ray Photons

$$\mu = N_{atom}(\tau_{atom} + \sigma_{atom}) = \frac{\rho}{Au}(\tau_{atom} + \sigma_{atom})$$

$$\propto \frac{\rho}{Au} \left(\frac{Z^n}{E^m} + \frac{Z}{E}\right)$$

$$\propto \frac{\rho}{u} \frac{Z}{A} \left(\frac{Z^{n-1}}{E^m} + \frac{1}{E}\right); \frac{Z}{A} \approx \frac{1}{2}$$

$$\propto \rho \text{ at high } E; \qquad \propto \rho Z^{n-1} \text{ at low } E$$

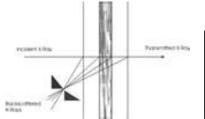
Explosives: $\rho > \text{most}$ organics and polymers, $Z \approx H_2O$. μ at high *E*: mass density, ρ . μ at low *E*: combination of ρ and atomic number, Z^{n-1} . μ at low *E* / μ at high *E*: Z^{n-1} . Dual *E*: $\rho \& Z^{n-1}$ separately. Scattering/Transmission: ρ and $\rho \& Z^{n-1}$ separately.

How to measure μ of of X-ray or Gamma-Ray Photons

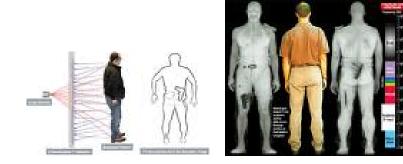
Transmission Radiography:

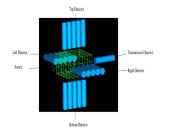
$$I(x) = I_0 \exp(-\mu x)$$

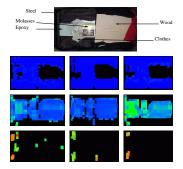
Luggage (X-ray) & Cargo (Gamma-ray) Radiography



x10190732 Felorenarth.com

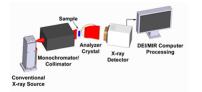

Compton Scattering (Incoherent) $\rightarrow \rho$

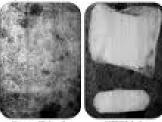

X-ray Backsatter Bodyscanner



One-Side Exposure: 3D - 3 Paramters

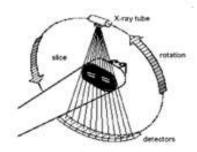
UNB-LTMD: ρ (from Compton Scattring), $\mu(E_{incident})$, $\mu(E_{scatter})$.





Crystalline Structure X-ray Coherent Scattering (Diffraction)

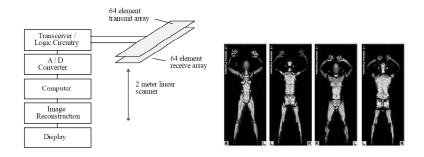
Low Energy X-rays \rightarrow Diffraction Patterns \rightarrow Characterize Crystals. Diffraction Enhances X-ray Imaging (DEXI).



Concerned Rategraph.

1000 Tubality

Computed Tomography


Molecular Structure

Micro (1 m - 1 mm, 300 MHz - 300 GHz) & Millimeter (27 - 33 GHz) Waves

- Determine dielectric properties.
- Mircowave transmission, refraction and reflections are affected.
- Microwave strongly absorbed by water and entirely reflected by metals.
- Lower-energy electromagnetic waves have wavelengths comparable to lattice pitch (can detect structure of crystallized explosives).
- Millimeter waves, used in body scanners for surface imaging to detect material concealed under clothing: two antennas simultaneously rotate around the body and cover its surface from all directions.

Millimeter EM waves Bodyscanner

Crystal Structure

Nuclear Quadruple & Magnetic Resonance (NQR & NMR)

- ¹⁴N spin $> \frac{1}{2} = 1 \rightarrow$ a nuclear electric quadrupole moment affects electric field of the surrounding electrons.
- RF pulses to detect the presence of nitrogen in explosives.
- Produces an electric quadrupole coupling, with a resonance when valence electrons align with ¹⁴N spins.
- Crystal structure determines the energy associated with this alignment, specific signature.
- NQR signal is weak, difficult to analyze, affected by metal.
- Nuclear magnetic resonance (NMR), similar principle but an external magnetic field is applied.
 - Interaction between magnetic moment of nuclei and the external field results in a resonance.
 - Energy of RF pulse, with a frequency appropriate to type of nuclei and molecular structure, is absorbed.
 - ¹H-¹⁴N nuclear-dipole-moment cross coupling in explosive materials enables their detection with NMR.

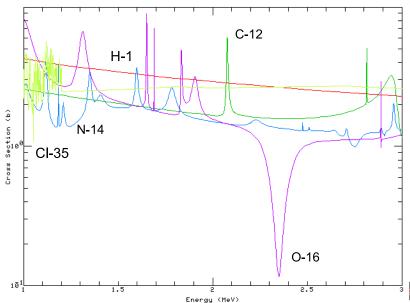
Elemental Analysis: Neutron Activation N, O, C, H, Cl

Nitrogen-14: Thermal-neutrons \rightarrow 10.83 MeV prompt gamma-rays.

Oxygen-16: Fast-neutrons (> 5 MeV \rightarrow 6.13) MeV gamma.

Carbon-12: Fast-neutrons (> 5 MeV \rightarrow 4.43) MeV gamma

Hydrogen: Thermal-neutrons \rightarrow 2.22 MeV gamma.


Chlorine-35: Thermal-neutrons \rightarrow 517.07 MeV gamma.

Thermal Neutrons: not directly generated, bulky slowing-down material, self-attenuated, may leave undesirable secondary radiation.

Fast Neutrons: available generators, can also activate ¹⁴N, slowed-down by ¹H, also residual activation.

Activation cross section are typically low \rightarrow intense sources.

Elemental Analysis: Elastic-Scatter Resonances

Nuclear Materials

Fissile: ²³⁹Pu, ²³³U, enriched, natural uranium, ²³⁷Np (can undergo fission) and its presence is indicative of the presence of U and/or Pu.

Fertile: Depleted uranium, thorium.

- Mainly alpha emitters, but also decay by spontaneous fission but at very low level.
- Fission produces neutrons and gamma-rays, detectable.
- Neutron emission is mostly indicative of the presence of a nuclear material.
- Alpha particles produce neutrons when interacting with surrounding metal or ceramic.
- Large-angle Coulomb deflection of cosmic-ray muons by the large *Z*-number of nuclear materials.

Non-Nuclear Radioactive Material

Medical Isotopes: ¹⁸F, ⁶⁷Ga, ^{99m}Tc, ¹¹¹In, ¹²³I, ¹²⁵I, ¹³¹I, ¹³³Xe, ²⁰¹TI, ⁵¹Cr and ¹⁰³Pd.
Industrial Isotopes: ⁵⁷Co, ⁶⁰Co, ⁷⁵Se, ⁹⁰Sr, ¹³³Ba, ¹³⁷Cs, ¹⁹²Ir, ²⁴¹Am and ¹⁵²Eu,
Natural Isotopes: ⁴⁰K (fertilizer, kitty litter, tiles, ceramics, some plant vegetation), ²²⁶Ra (from uranium decay) and its daughters, ³²²Th and its decay products, and ²³⁸U in natural uranium (in colored glass and in Fiesta ware).

Radioactive Material Detection

- Detectable by their radiation emission, if penetrating (gamma rays & neutrons).
- Gamma and neutron emitters can be shielded, but no matter how well-shielded, some amount of radiation will penetrate through.
- Alpha and beta emitters are more difficult to directly detect.
 - Alpha particles produce neutrons when interacting with surrounding metal or ceramic.
 - β^- emitters: bremsstrahlung or heat imprint, gamma from daughter (Thermoelectric Generators: ⁹⁰ Sr \rightarrow ⁹⁰Yt \rightarrow 2.18 MeV gamma)
 - β^+ emitters: detected by the 511 keV annihilation gamma.
 - Alpha and beta radiation may be detectable by contamination detectors.

Closing Comments

- Dealing with rare events.
- Even best of equipment will tend to have a positive-false alarm.
- Nature and type of threat are unpredictable.
- Slow detection systems are not suited everywhere.
- Efficient detection systems can come at the expense of reliability.
- Routine and predictable protocols are not desirable.
- Orthogonality of detection: more than one system each. based on different physics.

Visit us at:

Laboratory for Threat Material Detection:

http://www.unb.ca/ME/research/LTMD/

My webpage: http:

//www.unb.ca/fredericton/engineering/
depts/mechanical/people/hussein.html

A postdoctoral fellowship available: e-mail hussein@unb.ca.

